11.4: The Comparison Test and Limit Comparison Test.

Much like we did with the comparison test for improper integrals in 7.8 , we can sometimes determine the convergence of a series $\sum_{n=1}^{\infty} a_{n}$ by comparing it to a known series $\sum_{n=1}^{\infty} b_{n}$

The Comparison Test

If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are both series consisting of positive terms (or ulimately positive)
i) If $\sum_{n=1}^{\infty} b_{n}$ is convergent and $b_{n} \geq a_{n}$ then $\sum_{n=1}^{\infty} a_{n}$ is \qquad
ii)
If $\sum_{n=1}^{\infty} b_{n}$ is divergent and b_{n} \qquad a_{n} then $\sum_{n=1}^{\infty} a_{n}$ is divergent

Examples:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}+n}
$$

$$
\sum_{n=1}^{\infty} \frac{1}{n-\frac{1}{2}}
$$

Important notation detail:
We compare terms of series, not series them selves
We discuss convergence of series, not of terms of series.

Examples:
$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}-5}}$
$\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$
$\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{4}+4}$
$\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
useful fact: \qquad
$\sum_{n=2}^{\infty} \frac{1}{\ln n}$
$\sum_{n=1}^{\infty} \frac{1}{n!}$
useful fact: \qquad
$\sum_{n=1}^{\infty} \frac{1}{n^{3}-n}$
have to get creative

Limit Comparison Test
If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are both series consisting of positive terms (or ulimately positive) and if $c=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$, then
If C is finite and $\mathrm{C}>0$ the both series converge or both series diverge.

Example:
$\sum_{n=1}^{\infty} \frac{1}{n^{3}-n}$

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+7}}
$$

$\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
note: \qquad

Review thus far:

What about series with all negative terms?
What about series which are neither ultimately positive nor ultimately negative?

In particular, consider Alternating Series: $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ or $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n} ; \quad b_{n}>0$

11.5 Alternating Series Test

Here we examine series of the form $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ or $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n} ; \quad b_{n}>0$,

Motivating Example: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$

$$
\begin{aligned}
& a_{1}=_, \quad, a_{2}=_, a_{3}=\ldots, \ldots a_{n}=_, \ldots \\
& b_{1}=\ldots, b_{2}=\ldots, b_{3}=\ldots
\end{aligned}
$$

Consider the sequence of partial sums:

Visualizing this graphically:

Alternating Series Test If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots \quad b_{n}>0
$$

satisfies

> (i) $b_{n+1} \leqslant b_{n} \quad$ for all n
> (ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.

Examples:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \sqrt{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln n}
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n-1}}
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 3 n}{4 n-1}
$$

Error Estimate for AST
In general, we have

OR.

Sum must be" trapped" between successive terms of the sequence of partial sums.

So the error in approximating S by Sn is

$$
R_{n}=\left|S-_\left|\leq\left|S_{n+1}-S_{n}\right|=\right.\right.
$$

\qquad

Example:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

(a) Estimate the sum using S_{10}

$$
S_{10}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10} \approx
$$

(b) What is the bound on the error if S_{10} is used to approximate S .
(c) How many terms would be needed to obtain an error < 0.05?

11.6 Absolute Convergence, Ratio Test and Root Test

Absolute Convergence:
Here will look at the relationship between the convergence of a series $\sum_{n=1}^{\infty} a_{n}$ and a series where we take the absolute value of each term $\sum_{n=1}^{\infty}\left|a_{n}\right|$.

For example:
(!) If $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=$ \qquad then $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n^{2}}\right|=$ $=\sum_{n=1}^{\infty}-$

In this case, both are \qquad -

However,

$$
\text { (2) If } \sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\left[\quad \text { then } \sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n}\right|=\right.
$$

\qquad $=$ \qquad

In. this case

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \ldots \text { while } \sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n}\right|=
$$

\qquad

A series $\sum_{n=1}^{\infty} a_{n}$ is called \qquad if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.
If the series $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges, $\sum_{n=1}^{\infty} a_{n}$ is called \qquad

How does absolute convergence relate to "regular" convergence?

Theorem: If $\sum_{n=1}^{\infty} a_{n}$ is abolutley convergent then it is convergent, that is: ABSOLUTE CONVERGENCE \Rightarrow CONVERGENCE Proof:

What about converse?

Example: From last section

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \sqrt{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln n}
$$

Idea: Recall geometric series:

$$
\frac{a_{n+1}}{a_{n}}=
$$

\qquad and the geometric series converges for \qquad

It seems plausible that for a general series (not necessarily geometric) if $\left|\frac{a_{n+1}}{a_{n}}\right|<$ \qquad as $n \rightarrow \infty$ then the series \qquad

The Ratio Test

(i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum a_{n}$.

See proof which uses the comparison test for our series to a geometric series.

Examples:
$\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{10^{n}}$

$$
\sum_{n=1}^{\infty} \frac{5}{(2 n+1)!}
$$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+3)}
$$

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n} n!}{5 \cdot 8 \cdot 11 \cdots \cdots \cdot(3 n+2)}
$$

The Root Test

The Root Test

(i) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(ii) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the Root Test is inconclusive.

This is also proved by comparing to a geometric series.
Examples:
$\sum_{n=1}^{\infty} \frac{1}{n^{n}}$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} e^{2 n}}{n^{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{n^{3}+1}{2^{n}}
$$

11.7 Putting it all together - Strategies and Practice!

Heirachy:

Summary of Tests:

